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INTRODUCTION

Pork quality is one of the most important aspects 
for all segments of the swine industry (Rosenvold and 
Andersen, 2003). Genomic selection (Meuwissen et al., 
2001) and whole-genome regression methods such as 
Genomic Best Linear Unbiased Prediction (GBLUP) 
have allowed estimation of genomic breeding values 
(GEBV) for pork (H. Wang et al., 2012) and beef qual-
ity traits (Akanno et al., 2014). Genomic Best Linear 
Unbiased Prediction assumes that SNP effects are inde-
pendent and normally distributed, assigning the same 
variance to all SNP (VanRaden, 2008; Habier et al., 

Implementing meta-analysis from  
genome-wide association studies for pork quality traits1

Y. L. Bernal Rubio,*† J. L. Gualdrón Duarte,* R. O. Bates,† C. W. Ernst,† D. Nonneman,‡ G. A. 
Rohrer,‡ D. A. King,‡ S. D. Shackelford,‡ T. L. Wheeler,‡ R. J. C. Cantet,*§ and J. P. Steibel†#2

*Departamento de Producción Animal, Facultad de Agronomía, UBA, Buenos Aires, Argentina; †Department  
of Animal Science, Michigan State University, East Lansing 48824; ‡USDA/ARS, U.S. Meat  

Animal Research Center, Clay Center, NE 68933; §Consejo Nacional de Investigaciones Científicas y Técnicas-  
CONICET. Argentina; #Department of Fisheries and Wildlife, Michigan State University, East Lansing 48824

ABSTRACT: Pork quality plays an important role in 
the meat processing industry. Thus, different method-
ologies have been implemented to elucidate the genetic 
architecture of traits affecting meat quality. One of the 
most common and widely used approaches is to perform 
genome-wide association (GWA) studies. However, 
a limitation of many GWA in animal breeding is the 
limited power due to small sample sizes in animal 
populations. One alternative is to implement a meta-
analysis of GWA (MA-GWA) combining results from 
independent association studies. The objective of this 
study was to identify significant genomic regions asso-
ciated with meat quality traits by performing MA-GWA 
for 8 different traits in 3 independent pig populations. 
Results from MA-GWA were used to search for genes 
possibly associated with the set of evaluated traits. 
Data from 3 pig data sets (U.S. Meat Animal Research 
Center, commercial, and Michigan State University Pig 

Resource Population) were used. A MA was imple-
mented by combining z-scores derived for each SNP 
in every population and then weighting them using the 
inverse of estimated variance of SNP effects. A search 
for annotated genes retrieved genes previously reported 
as candidates for shear force (calpain-1 catalytic sub-
unit [CAPN1] and calpastatin [CAST]), as well as for 
ultimate pH, purge loss, and cook loss (protein kinase, 
AMP-activated, γ 3 noncatalytic subunit [PRKAG3]). 
In addition, novel candidate genes were identified for 
intramuscular fat and cook loss (acyl-CoA synthetase 
family member 3 mitochondrial [ACSF3]) and for the 
objective measure of muscle redness, CIE a* (glycogen 
synthase 1, muscle [GYS1] and ferritin, light poly-
peptide [FTL]). Thus, implementation of MA-GWA 
allowed integration of results for economically relevant 
traits and identified novel genes to be tested as candi-
dates for meat quality traits in pig populations.
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2010); GBLUP based on REML and BLUP programs 
is straightforward to implement and less computation-
ally demanding than other genomic prediction meth-
odologies (Guo et al., 2014). A common practice after 
implementation of genomic evaluations is to perform a 
genome-wide association study (GWA; Ma et al., 2013; 
Jung et al., 2014; Stratz et al., 2014). However, the power 
of GWA has been limited because of small sample sizes 
(less than 2000 animals) and the complex population 
structures characterizing animal data sets (Muñoz et al., 
2009; Minozzi et al., 2012). One alternative to reduce 
false-positive associations and to increase the power of 
association studies is to perform a meta-analysis of GWA 
(MA-GWA), defined as the statistical methodology that 
integrates results from individual association studies in a 
unique statistic across data sets (Evangelou and Ioannidis, 
2013). In animal breeding, different implementations 
of MA have been done (Wood et al., 2006; Salmi et al., 
2010; Silva et al., 2011; Akanno et al., 2013; Bolormaa 
et al., 2014). However, implementation of MA consid-
ering results from independent GWA is still emerging. 
As GBLUP is the most commonly used methodology 
to perform genomic evaluations, a MA-GWA of several 
populations using GBLUP is an attractive approach to 
increase power of detection of variants with small ef-
fects across populations. The goal of this research was 
to implement a MA from multiple independent GBLUP 
evaluations to identify and suggest potential candidate 
genes for pork quality traits.

MATERIALS AND METHODS

Data Sets
Animal protocols were approved by the Michigan 

State University All University Committee on Animal 
Use and Care (AUF number 09/03-114-00). Phenotypes 
related to pork quality traits from 3 different pig popu-
lations were analyzed, and a brief description follows.

Michigan State University Pig Resource Popula-
tion (MSUPRP). An experimental population was 
developed at the Michigan State University Swine 
Teaching and Research Center (Edwards et al., 2008). 
Four unrelated Duroc sires and 15 Pietrain sows were 
mated to produce F1 animals. From all resulting F1 ani-
mals, 50 females and 6 males (sons of 3 F0 sires) were 
kept as parents to produce F2 pigs. In this case, 1,259 F2 
pigs were obtained and were measured for growth, car-
cass composition, and pork quality traits (Edwards et al., 
2008). Animals were genotyped using high- and low-
density panels; that is, 411 F0, F1, and F2 animals were 
genotyped with the PorcineSNP60 BeadChip (Illumina 
Inc., San Diego, CA.; Ramos et al., 2009) while 612 ad-
ditional F2 animals were genotyped with the 9K tagSNP 

set (GGP-Porcine LD version 1, GeneSeek, Lincoln, 
NE; Badke et al. 2013) and imputed with high accuracy 
(Gualdrón Duarte et al., 2013).

Meat Animal Research Center Population (MARC). 
This population was developed at the U.S. Meat Animal 
Research Center (USMARC, Clay Center, NE) and was 
created from the mating of Yorkshire-Landrace females 
(n = 220) with Duroc or Landrace sires (12 sires of each 
breed). Twelve sires of each breed were assigned ran-
domly to Yorkshire-Landrace females (n = 220). In the 
next generations of matings, Duroc-sired pigs were mated 
with Landrace-sired pigs, and further matings were done 
at random, avoiding those within sire line. This multigen-
erational population consists of 1,237 phenotyped ani-
mals, sampled in different generations and genotyped us-
ing the PorcineSNP60 BeadChip (Illumina Inc.; Ramos 
et al., 2009). Sporadically missing genotypes (<2%) 
were imputed using University of Washington, Seattle, 
WA. BEAGLE version 3.3.1 (Browning and Browning, 
2009; estimated imputation accuracy >98%). Carcass 
composition and pork quality trait records were collected 
as previously described (Nonneman et al., 2013).

Commercial Population. Pork quality traits were 
measured from boneless loins, obtained from 4 large-
scale processing facilities and sampled at approximately 
24 h postmortem (King et al., 2011; Shackelford et al., 
2012). Loins were part of previous research projects and, 
specifically, provided by King et al. (2011; 1,208 loins 
from 4 plants), Shackelford et al. (2011; 112 loins from a 
single packing plant), and Shackelford et al. (2012; 600 
loins from 3 plants). Some plants were common among 
studies, and thus, 5 locations were included. Loins were 
combined from the 3 studies, involving pigs of similar 
genetic origin (Shackelford et al., 2011). Loins were vac-
uum packaged, boxed, and transported to USMARC, and 
at 14 d postmortem, color was determined objectively 
(Minolta ColorTec PCM; color-tec.com, Clinton, NJ). In 
this data set, 480 loins (25% of the samples) were select-
ed at random to be genotyped using the PorcineSNP60 
BeadChip (Illumina Inc.; Ramos et al., 2009), whereas 
1,440 loins were genotyped using the 9K tagSNP set 
(GGP-Porcine LD version 1, GeneSeek, Lincoln, NE; 
Badke et al., 2013) and imputed using BEAGLE ver-
sion 3.3.1 (Browning and Browning, 2009) as described 
in Badke et al. (2013). Imputation accuracy (97%) was 
determined as the squared correlation between the ob-
served and imputed allelic dosage in randomly masked 
and reimputed genotypes.

Phenotype Data

Pork quality traits were measured in the LM, includ-
ing ultimate pH 24 h postslaughter (pHu), slice shear 
force (SF) in kilograms or Warner-Bratzler shear force 
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(WBS) in kilograms, purge loss percentage (PRL), in-
tramuscular fat percentage (IMF), cook loss percentage 
(CKL), and objective color measures of lightness (CIE 
L*), redness (CIE a*), and yellowness (CIE b*). Table 
1 presents descriptive statistics for the traits within each 
data set. The Meat Animal Research Center population 
and MSUPRP reported the smallest number of records 
for all traits except for IMF, whereas the commercial 
population had the lowest sample size. Across popula-
tions, the largest number of records was observed for 
SF (n = 4,037), in contrast to those available for IMF 
(n = 2,844). Homogeneous mean values for pHu were 
observed across data sets in comparison with values re-
ported for the remaining traits. Smaller values for WBS 
in MSUPRP are related to differences in measurement 
instruments, that is, SF in MARC and commercial popu-
lations vs. WBS in MSUPRP.

Data Edit. In all data sets, individuals with low 
genotyping rate (<90%) and more than 10% of miss-
ing genotypes before imputation were discarded. After 
imputation, SNP with low minor allele frequency, de-
termined within each data set (Minor Allele frequency 
< 5%), were discarded. Table 2 summarizes the total 
number of animals and SNP after applying edit criteria 
independently in each data set, as well as the imputation 
accuracy observed in the pig data sets.

Statistical Analysis

Genome-Wide Association for Pork Quality 
Traits. To perform a GWA for pork quality traits with-
in data sets, variance components and breeding values 
were estimated following the animal centric model for 
genomic evaluation given by

,= + +βy X a e  [1]

where y is the vector of phenotypes; X is the incidence 
matrix relating records to the vector of fixed effects β; 
e is the vector of residual effects, with e ~ N (0, 2

eσI ) 
and 2

eσ  being the residual variance; a is the vector of 
random breeding values, with a ~ N(0, G 2

aσ ) and 2
aσ  

being the additive genetic variance; and G is the ge-
nomic relationship matrix (n × n), with n being the 
number of animals and obtained as G = ZZ′. In this 
case Z (n × m), with m being equal to the number of 
SNP, is the matrix containing normalized allelic dos-
ages (counts of allele “B” minus its expected value 
divided by expected standard deviation). A prelimi-

Table 1. Number of records, mean, and SD for each trait within data sets

 
Trait1

Commercial MARC2 MSUPRP3  
Total N4N5 Mean (SD)6 N Mean (SD) N Mean (SD)

pHu 1,857 5.63 (0.166) 530 5.812 (0.168) 904 5.512 (0.139) 3,291
SF, kg 1,892 16.81 (5.628) 1,234 13.79 (3.435) 911 3.205 (0.683) 4,037
PRL,% 1,780 0.885 (0.763) 673 2.955 (1.259) 920 1.838 (1.175) 3,373
IMF,% 700 2.154 (0.770) 1,234 2.276 (1.047) 910 3.182 (1.406) 2,844
CKL,% 1,780 17.24 (2.257) 1,234 20.18 (3.062) 912 22.73 (2.836) 3,926
CIE L* 1,780 57.67 (3.343) 704 56.13 (3.756) 874 53.79 (2.238) 3,358
CIE a* 1,780 14.49 (1.495) 704 6.746 (1.428) 874 17.26 (1.827) 3,358
CIE b* 1,780 21.03 (2.07) 704 12.92 (1.686) 874 9.107 (1.603) 3,358

1Trait: pHu = ultimate pH; SF = shear force; PRL = purge loss; IMF = intramuscular fat; CKL = cook loss; CIE L*, a* and b* = color traits related to 
measures of lightness, redness, and yellowness, respectively.

2U.S. Meat Animal Research Center population.
3Michigan State University Pig Resource population.
4Total number of records for each trait across data sets.
5Number of records for each trait and for each population.
6Mean and SD for each trait and population.

Table 2. Summary of genotypic information for 
commercial, U.S. Meat Animal Research Center 
(MARC), and Michigan State University Pig Resource 
(MSUPRP) populations

 
Item

Population
Commercial MARC MSUPRP

Number of SNP after filtering1 45,688 44,020 40,569
Number of individuals genotyped at HD2 474 1234 324
Number of individuals genotyped at LD3 1418 0 604
Total number of individuals4 1892 1234 928
Imputation accuracy5 0.97 — 0.99

1Number of SNP after quality control filters.
2High-density genotyped animals, kept after quality control filters. 

High-density genotyping performed using the PorcineSNP60 BeadChip 
(Illumina Inc. San Diego, CA; Ramos et al., 2009).

3Low-density genotyped animals, kept after quality control filters. Low-
density genotyping performed using the GGP-Porcine LD (GeneSeek, 
Lincoln, NE; Badke et al., 2013)

4Final number of animals for each population
5Imputation accuracy obtained for commercial (following Badke et al., 

2013) and MSUPRP (Gualdrón Duarte et al., 2013).
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nary study was conducted to determine fixed effects 
that accounted for systematic variation of each trait 
in each population. As a result, different fixed ef-
fects were included depending on the population (see 
Supplementary Table 1).

Population Structure Analysis. According to Janss 
et al. (2012), inclusion of principal components in mod-
el [1] to account for population structure is not required, 
mainly because of the genetic variation accounted for 
after the genomic relationship matrix G has been con-
sidered in the model. Thus, principal components were 
not incorporated in individual population analyses.

Population Test Statistics. For each SNP and trait 
within population, estimates of SNP effects ĝ were 
computed from a linear transformation of estimated 
breeding values â : 1ˆ ˆ−′Gg = Z a , with their variances 
obtained as ( ) 21 1 1ˆVar a

− − −′ ′σ − aag = Z G Z Z G C G Z  
(Gualdrón Duarte et al., 2014). In this case, 2

aσ  is the 
genetic variance, and Caa is the portion of the inverse 
of the mixed model equations associated with model 
[1]. Then, test statistics were obtained standardizing 
estimated SNP effects divided by the square root of 
their variance (Bernal Rubio et al., 2014):

( )
ˆ

,
ˆVar

i j
i j

i j

z =
g

g  [2]

where zij corresponds to the z-score for jth SNP in popula-
tion i. Furthermore, on the basis of these z-scores, P-values 
for significance of SNP effects were obtained as follows:

( )
ˆ

-value 2 1 ,
ˆVar

ij
ij

ij

P
  
  −Φ      

g
=

g  [3]

where P-valueij is the P-value associated with the jth 
SNP in population i and ɸ(·) is the standard normal 
cumulative distribution (Gualdrón Duarte et al. 2014).

Meta-analysis of Genome-Wide Association 
Studies. Following the approach presented by Bernal 
Rubio et al. (2014), we combined population z-scores 
obtained from multiple independent GWA studies (Eq. 
[2]) into a single z-score, considering the Hedges and 
Vevea estimator (Hedges and Vevea, 1998). In this ap-
proach, weights are based on the estimation of the in-
verse variance of each effect size. It has been shown 
that the test statistic presented in Eq. [2] is equivalent 
to a test statistic based on a SNP fixed effects model 
(Bernal Rubio et al., 2015). Thus, to optimally weight 
test statistics given in Eq. [2], variance of the fixed 
SNP effect estimate ( )ˆVar ijb  has to be computed from 
the variance of the random effect ( )ˆVar ijg  (Bernal 
Rubio et al., 2015). That is,

( ) ( )
( )

22

ˆVar .
ˆVar

a
ij

ij

σ
=b

g  
[4]

Thus, considering the result presented in Eq. [4], the 
weight for inverse-variance criterion is

( )
1 .

ˆVar
ij

ij

w =
b

 
[5]

This weighting approach requires a consistent scale of 
measurement across data sets. However, in the case 
of SF, different units were used for the commercial 
and MARC populations in comparison with MSUPRP 
(WBS). Thus, to combine test statistics obtained for 
SF across populations, we transformed genetic vari-
ance and variance of each SNP effect obtained within 
population, using the following equation given by 
Shackelford and Wheeler (2009):

( )WBS 0.1063 SF 2.2718.= × +  [6]

Combined z-Score. Weights obtained from Eq. [5] 
were used to generate a unique z-score *

jz , computed 
as a weighted combination of the population specific 
z-scores zij obtained with Eq. [2]:

*

1

1

.
k

i j
j i j k

i
i j

i

w
z z

w=

=

  
  
  =   
      

∑
∑  

[7]

Finally, meta-analysis P-values of association were 
computed as presented in Eq. [3].

Candidate Gene Search Based on Linkage 
Disequilibrium Blocks. Following a similar approach 
to the one presented by Do et al. (2014), intervals for 
candidate gene search were defined according to link-
age disequilibrium (LD) blocks, constructed around 
QTL peaks. Considering that the goal was to find LD 
patterns consistent across populations, LD blocks were 
constructed on the basis of the creation of a unique 
genotype file, which included common SNP after qual-
ity checks within data sets (m = 36,876). After that, an-
notated genes contained in the window were identified 
using Ensembl with the Sus scrofa Build 10.2 assembly 
(http://ensembl.org/Sus_scrofa/Info/Index).

RESULTS AND DISCUSSION

Genetic Variation between Populations. Genetic 
and residual variances, as well as heritabilities and SE 
estimates of variance components and of heritabilities 
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for evaluated phenotypes, are presented in Table 3. In 
general, heritability estimates for evaluated traits had a 
wide range, with minimum and maximum values of 0.16 
and 0.60 for CIE a* in MARC and MSUPRP, respec-
tively. In our data sets, the widest range of heritabilities 
was observed for CIE a*. This can be explained by the 
difference in variance component estimates across pop-
ulations. Specifically, genetic variance estimates were 
larger in commercial and MSUPRP data sets, leading to 
larger heritabilities for CIE a* in those populations, re-
gardless of the large value of residual variance observed 
in the commercial population (Table 2). However, glob-
ally, our estimates were moderate to high and similar 
to results reported for these traits in the literature. For 
instance, Gjerlaug-Enger et al. (2010) reported herita-
bilities ranging from 0.23 to 0.33 for PRL, 0.19 to 0.27 
for pHu, 0.50 to 0.62 for IMF, and between 0.28 and 
0.41, 0.43 and 0.46, and 0.31 and 0.33 for CIE L*, CIE 
a*, and CIE b*, respectively. These values are similar to 
estimates presented in this paper. The importance of ac-
counting for variance component heterogeneity in GWA 
has been shown (Bernal Rubio et al., 2015). Specifically, 
meta-analysis of independent genomic evaluation mod-
els for each population under study will account for 
heteroscedasticity across populations. Our methods for 
combining SNP effects into a MA-GWA considers the 
differences in variance components, and it increases 
power compared to a joint analysis in which records 
are pooled and analyzed together (Walling et al., 2000; 
Zhou et al., 2011; Bernal Rubio et al., 2015).

Meta-analysis of GWA. Figure 1 presents Manhattan 
plots for MA of associations of pork quality traits. 
Significant association peaks detected by MA-GWA are 
summarized in Table 4. A significant QTL at 308.9 Mb 
on chromosome 1 (SSC1; ALGA0103022) was associ-
ated with CIE a*. On SSC2, significant associations with 

SF were observed at 5.4 Mb (H3GA0055977) and at 
106.4 Mb (ASGA0011029). In the case of SSC6, a QTL 
associated with IMF and CKL was identified at 0.013 
Mb (ALGA0109178), along with a significant second 
association with CIE a* at 49.8 Mb (DIAS0000492). 
Finally, a region identified on SSC15 was associated 
with several traits, pHu at 135.2 Mb (H3GA0052416) 
and PRL and CKL at 133.9 Mb (M1GA0020450). No 
significant associations with CIE b* or CIE L* were 
identified by MA.

Some of the significant SNP are in close proximity to 
previously reported QTL regions. On SSC2, a significant 
association detected at 5.4 Mb for SF (included in the 
region between 5.1 and 6.2 Mb) was 0.5 Mb away from 
a significant SNP reported by Nonneman et al. (2013) 
for the same trait. Likewise, on SSC15, significant as-
sociations for pHu observed in this paper (133.2 to 135.7 
Mb) overlapped the associations reported by Uimari et al. 
(2013; between 133 and 134 Mb). On the same chromo-
some, a significant interval observed for CKL (133.2 to 
135.2 Mb) included the region reported by Nonneman et 
al. (2013), located between 133.4 and 133.8 Mb.

We also discovered numerous novel associations. 
Specifically, a significant SNP associated with CIE a* 
on SSC1 (308.9Mb) has not been reported. A significant 
SNP located at 106.4 Mb on SSC2 that is associated with 
SF is near the QTL previously reported by Rohrer et al. 
(2006) and by Stearns et al. (2005) on SSC2 for shear 
force. In the case of SSC6, a significant SNP located at 
0.013Mb  associated with CKL and IMF is distant from 
the region previously reported by Ponsuksili et al. (2010) 
for CKL (around 71 Mb apart from our reported SNP) 
and by Markljung et al. (2008) for IMF (between 22 and 
26 Mb apart from our SNP). Also on SSC6, the significant 
interval identified between 48.5 and 63.1 Mb for CIE a* 
was 12 Mb upstream from the region previously reported 

Table 3. Variance components, heritabilities, and SE estimates for each trait and data set

 
Trait1

Genetic variance (SE) Residual variance (SE) Heritability (SE)2

Com3 MARC4 MSU5 Com MARC MSU Com MARC MSU
pHu 0.009 (0.001) 0.007 (0.002) 0.003 (0.001) 0.017 (0.001) 0.019 (0.002) 0.013 (0.001) 0.340 (0.044) 0.267 (0.076) 0.169 (0.044)
SF, kg 7.584 (1.287) 3.329 (0.610) 0.112 (0.025) 18.122 (0.984) 7.499 (0.461) 0.286 (0.018) 0.295 (0.043) 0.307 (0.046) 0.282 (0.050)
PRL, % 0.184 (0.027) 0.528 (0.116) 0.289 (0.065) 0.313 (0.019) 0.801 (0.083) 0.797 (0.050) 0.370 (0.045) 0.397 (0.069) 0.266 (0.049)
IMF, % 0.275 (0.057) 0.445 (0.055) 0.917 (0.134) 0.324 (0.037) 0.361 (0.028) 0.794 (0.061) 0.459 (0.073) 0.552 (0.043) 0.536 (0.048)
CKL, % 1.483 (0.236) 1.270 (0.206) 2.230 (0.476) 2.929 (0.172) 2.148 (0.140) 5.363 (0.343) 0.336 (0.045) 0.372 (0.047) 0.294 (0.050)
CIE_L* 3.712 (0.557) 2.882 (0.709) 1.625 (0.316) 6.545 (0.393) 6.325 (0.536) 2.957 (0.203) 0.362 (0.045) 0.313 (0.064) 0.355 (0.052)
CIE_a* 0.900 (0.114) 0.131 (0.049) 0.552 (0.075) 1.103 (0.072) 0.688 (0.050) 0.363 (0.030) 0.449 (0.044) 0.160 (0.055) 0.603 (0.045)
CIE_b* 1.072 (0.166) 0.190 (0.065) 0.110 (0.029) 2.009 (0.119) 0.846 (0.063) 0.408 (0.026) 0.348 (0.045) 0.184 (0.057) 0.213 (0.048)

1Trait: pHu = ultimate pH; SF = shear force; PRL = purge loss; CKL = cook loss; IMF = intramuscular fat; CIE L*, a* and b* = color traits related to 
measures of lightness, redness and yellowness, respectively.

2Heritability estimates and standard error (Visscher and Goddard, 2015).
3Commercial population.
4U.S. Meat Animal Research Center (MARC) population.
5Michigan State University Pig Resource population.
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by Cherel et al. (2011) for the same trait. Associations 
for PRL on SSC15, located between 133.7 and 134 Mb, 
were distant from the significant QTL reported by Ma et 
al. (2013) at 96.4 Mb. Therefore, significant QTL and 
genomic regions identified by MA-GWA in this paper 
provide additional evidence of associations previously 
reported and also contribute novel evidence in regard to 
candidate regions associated with pork quality traits.

Candidate Genes Queried for Pork Quality Traits. 
For each QTL interval observed with MA and defined 
according to LD blocks around QTL peaks, several an-

notated genes were identified as possible candidates for 
pork quality traits (Table 5). One exception was SSC1 
associated with CIE a* (peak at 308.9 Mb). In this case, 
the initial interval was defined between 307.9 and 309.9 
Mb (1 Mb upstream and downstream from association 
peak), which was characterized by high LD between 
SNP around the peak and in neighboring LD blocks but 
with low LD in flanking regions. Thus, we narrowed 
down the genomic interval considering LD around a 
significant peak (308.9 to 309.1 Mb) and found 1 gene 
(vomeronasal 1 receptor 2 [VN1R2]; SSC1: 308.9 Mb) 

Figure 1. Significant associations for pork quality traits using inverse variance meta-analysis (MA). Manhattan plots for SNP associations using 
inverse variance MA for (a) ultimate pH 24 h postslaughter (pHu), (b) slice shear force (SF), (c) purge loss (PRL), (d) cook loss (CKL), (e) intramuscular 
fat (IMF), (f) CIE a*, (g) CIE b*, and (h) CIE L*. −Log10(P-value; y axis) vs. absolute SNP position in megabases (x axis). Alternating colors indicate 
autosomes (1–18). Genome-wide significance threshold is in red (P < 0.05).
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and 3 uncharacterized proteins. However, there is no ev-
idence of the biological association between the VN1R2 
gene and CIE a*, and thus, the genetic cause of this asso-
ciation peak remains unknown. With the small LD block 
in the region (0.2 Mb), no strong candidate gene exists.

Candidate Genes on Chromosome 2 (SF). In the 
case of SF and specifically for the first region on SSC2 
(5.3 to 6.5Mb), the gene calpain-1 catalytic subunit 
(CAPN1; SSC2: 6.12 to 6.15 Mb) can be suggested as a 
potential candidate gene in pigs. The region near CAPN1 
has previously been shown to be associated with SF in 
pigs (Nonneman et al., 2013), and SNP in bovine CAPN1 
have been associated with tenderness traits in several 
cattle populations (Page et al., 2004; White et al., 2005; 
McClure et al., 2012). According to Huff-Lonergan et 
al. (1996), the calpain protease system has an important 
role in postmortem proteolysis through degradation of 
myofibrillar and myofibril-associated proteins. In gen-
eral, mechanisms controlling meat tenderness depend on 
a complex interaction of cellular processes, myofibrillar 
degradation, and activity of enzymes, including cathep-
sins, the calpain/calpastatin system, and the proteasome 
(Bendixen, 2005). Therefore, we searched for further 
genes in the same region possibly having an effect on meat 
tenderness. First, the gene cystatin E/M (CST6; SSC2: 
5.395 to 5.396 Mb) encodes cystatin M or E/M, which is 
an endogenous inhibitor of lysosomal cysteine proteases 
that functions to regulate and protect cells against uncon-
trolled proteolysis by the cysteine proteases cathepsins 
L and V (cathepsin L [CTSL], cathepsin V [CTSV]; 
Turk and Bode, 1991; Cheng et al., 2006; Zeeuwen et al., 
2009). One of those protease cathepsins is encoded by 

the gene cathepsin W (CTSW; SSC2: 5.550 to 5.554 Mb), 
also found in the genomic region significantly associated 
with SF. Cathepsins have been suggested to contribute to 
the overall net myofibrillar proteolysis in porcine LM at 
the normal pHu, having an effect on protein degradation 
in muscle (Ertbjerg et al., 1999) and thus emerging as 
potential candidate genes for SF. In addition, the gene sy-
novial apoptosis inhibitor 1, synoviolin (SYVN1; SSC2: 
6.19 to 6.2 Mb) is an E3 ubiquitin ligase that encodes a 
protein involved in endoplasmic reticulum (ER) degra-
dation and uses the ubiquitin-proteasome system for me-
diated proteolysis of unfolded proteins. Those unfolded 
proteins have been highlighted in mice to decrease ER 
stress during chondrocyte hypertrophy (cells found in 
cartilage) by improving the protein-folding capacity of 
the ER (Kaufman, 1999; Malhotra and Kaufman, 2007; 
Ron and Walter, 2007; Cameron et al., 2011). All in all, 
CAPN1 remains the most likely candidate gene for SF in 
this region of SSC2, but we also wanted to call attention 
to colocalized genes that code for biochemically related 
proteins and could also be potential candidate genes for 
SF not reported before.

In the second region associated with SF located 
on SSC2 between 105.02 and 109.6 Mb, the gene cal-
pastatin (CAST; SSC2:106.9 to 107.1 Mb) is a candi-
date gene, considering that markers in CAST have been 
associated with tenderness in pork (Ciobanu et al., 2004; 
Meyers and Beever, 2008; Lindholm-Perry et al., 2009) 
and beef (Schenkel et al., 2006; McClure et al., 2012; 
Tait et al., 2014). Some SNP in transcription factor bind-
ing sites in the promoter region of porcine calpastatin 
that were consistently associated with tenderness across 
commercial populations showed allele-specific binding 
to nuclear proteins that may be functional (Nonneman 
et al., 2011). Calpastatin is the endogenous inhibitor 
of µ- and m-calpain, which regulates calpain activity 
in postmortem muscle (Koohmaraie, 1992). In pork, a 
high activity of calpastatin has been associated with 
reduced degradation of muscle proteins (Lonergan et 
al., 2001). In addition, Ciobanu et al. (2004) identified 
several variants of the porcine calpastatin gene that had 
significant effects on tenderness and other commer-
cially important pork quality traits. Thus, the present 
study allowed us to replicate previous findings, provid-
ing more evidence of the association between markers 
close to the calpastatin gene and tenderness in pork.

Candidate Genes Chromosome 6 (CKL and IMF). 
In the region significantly associated with CKL and IMF 
(SSC6 0 to 1 Mb), the gene acyl-CoA synthetase family 
member 3 mitochondrial (ACSF3; SSC6: 0.82 to 0.84 
Mb) is a candidate gene positioned close to the associa-
tion peak identified for those traits (0.013 Mb). The gene 
ACSF3 belongs to a family of enzymes that activate fatty 
acids (Bovo et al., 2015) and has been observed to be 

Table 4. Summary of significant regions associated with 
pork quality traits using inverse variance meta-analysis
 
Chr1

Peak  
SNP2

Peak position,3  
Mb

Searching  
interval,4 Mb

 
Trait5

1 ALGA0103022 308.9 308.9–309.1 CIE a*
2 H3GA0055977 5.4 5.3–6.5 SF
2 ASGA0011029 106.4 105.02–109.6 SF
6 ALGA0109178 0.013 0–1 IMF

CKL
6 DIAS0000492 49.8 47.3–52.7 CIE a*
15 H3GA0052416 135.2 131.9–135.7 pHu

M1GA0020450 133.9 PRL
M1GA0020450 133.9 CKL

1Chromosome relative to Sus scrofa genome build 10.2.
2SNP name in the peak.
3Position of the peak expressed in megabases.
4Interval for candidate genes search, established after linkage disequi-

librium block construction (expressed in megabases).
5Evaluated pork quality traits. Only those traits with significant QTL 

under inverse variance meta-analysis are included (pHu = ultimate pH; 
SF = shear force; PRL = purge loss; CKL = cook loss; IMF = intramuscular 
fat; CIE a* = color trait related to redness).
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overexpressed in pig semimembranosus muscle and re-
lated to the mitochondrial fatty acid β-oxidation pathway 
(Herault et al., 2014). With regard to CKL, we did not 
find previous results supporting a potential association 
with ACSF3. However, a relationship between IMF and 
CKL has been described before, showing that meat with 
a high content of IMF had a low CKL at 60°C and 70°C 
(temperature at center of loin chop), whereas at 80°C 
the meat with the lowest IMF content had a significantly 
higher CKL (Aaslyng et al., 2003). Hence, results ob-
tained in the present study for this region on SSC6 are 
relevant in different aspects: First, identification of the 
ACSF3 gene within a genomic interval significantly as-
sociated with IMF provides additional support for the 
relation between the ACSF3 gene and IMF. Moreover, 
our results provide potential evidence for the association 
between the ACSF3 gene and CKL, which was not pre-
viously reported. Finally, detection of a common signifi-
cant QTL for IMF and CKL (the same SNP was signifi-
cantly associated with both traits in MA-GWA) partially 
explains the possible biological relationship between 
IMF and CKL and resulting meat quality in pigs.

Candidate Genes Chromosome 6 (CIE a*). Two 
genes were identified as candidates for the objective 
measure of redness, CIE a*. The gene glycogen synthase 
1, muscle (GYS1; SSC6: 50.07 to 50.09 Mb), which is 
the skeletal muscle form of glycogen synthase (Wang 
et al., 2012), accounts for storage of circulating glucose. 
The anaerobic degradation of glycogen controls the rate 
and extent of pH decline in muscle affecting pork qual-
ity attributes, including color (Scheffler et al., 2011). In 
addition, the light chain ferritin gene ferritin, light poly-
peptide (FTL; SSC6: 50.09 Mb) has subunits along with 
H-ferritin (FTH1), integrating the iron storage protein 
complex ferritin. Iron content in pork is highly genetical-
ly correlated with a* and other color values (Hermesch 
and Jones, 2012). However, previous associations be-
tween GYS1 and FTL genes and CIE a* have not been 
reported. Consequently, results presented in this paper 
along with the biological pathways of these genes serve 

as precedent for the possible relationship between GYS1 
and FTL with measure of redness in pork.

Candidate Genes Chromosome 15 (pHu, CKL, 
and PRL). On SSC15, the gene protein kinase, AMP-
activated, γ 3 noncatalytic subunit (PRKAG3; SSC15: 
133.8 Mb), widely reported to affect variation in glyco-
gen content, PRL, CKL, pHu, and subsequent pork qual-
ity (Milan et al., 2000; Ciobanu et al., 2001; Otto et al., 
2007; Rohrer et al., 2012; Nonneman et al., 2013), is the 
strongest candidate gene for pHu, PRL, and CKL. The 
PRKAG3 gene has been widely associated with varia-
tion in muscle glycogen affecting production of lactate in 
postmortem muscle, the resulting pH, and, subsequently, 
the ability of meat to retain water during cutting, heat-
ing, and processing (water-holding capacity [WHC]) in 
fresh pork (Huff-Lonergan and Lonergan, 2005; Ryan 
et al., 2012). Additionally, relationships between pHu, 
CKL, and PRL have been reviewed in the literature. 
Specifically, Hamm (1960) observed that the rate and 
extent of pH decline affected proteolysis of cytoskeletal 
proteins and WHC in pork. High PRL and development 
of low WHC is related to low pHu, a decline that results 
in denaturation (loss of functionality and water-binding 
ability) of many proteins, including those involved in 
binding water (Huff-Lonergan and Lonergan, 2005). In 
regard to CKL, Aaslyng et al. (2003) have indicated that 
WHC and pH influenced CKL, where low WHC and low 
pH resulted in high CKL. Altogether, considering the 
physiological association between pHu, PRL, and CKL, 
the detection of a common genomic region for those 
traits in our populations is an expected result. As a conse-
quence, identification of the PRKAG3 gene provides fur-
ther evidence for its association with pork quality traits 
such as pHu, PRL, and CKL.

Conclusion

In conclusion, implementation of MA-GWA al-
lowed the identification of significant genetic associa-
tions with pork quality traits that were consistent across 

Table 5. Candidate genes queried for pork quality traits
Chr1 Significant region2 Trait3 Symbol4 Candidate gene name5

2 5.3–6.5 SF CAPN1 calpain-1 catalytic subunit
2 105.02–109.6 SF CAST calpastatin
6 0–1 IMF, CKL ACSF3 acyl-CoA synthetase family member 3
6 47.3–52.7 CIE a* GYS1 glycogen synthase 1 (muscle)

FTL ferritin light polypeptide.
15 131.9–135.7 pHu, PRL, CKL PRKAG3 protein kinase, AMP-activated, γ3 noncatalytic subunit

1Chromosome.
2Significant region in megabases.
3Trait: PRL = purge loss; pHu = ultimate pH; SF = shear force; CKL = cook loss; IMF = intramuscular fat; CIE a* = color trait (measure of redness).
4HGNC (Human genome organization Gene Nomenclature Committee) symbol of candidate gene (http://www.genenames.org/).
5Name of candidate gene (http://www.genenames.org/).
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3 populations of diverse genetic backgrounds by com-
bining results from independent genomic evaluations. 
Significant regions included associations on SSC1 for 
CIE a*; on SSC2 for SF; on SSC6 for IMF, CKL, and 
CIE a*; and on SSC15 for PRL, CKL, and pHu. The 
MA-GWA confirmed candidate genes previously re-
ported for pHu, PRL, and CKL (PRKAG3) and SF 
(CAPN1 and CAST), and it identified novel candidate 
genes for CKL and IMF (ACSF3) and for CIE a*(GYS1 
and FTL). Further research is required to test biological 
relationships between novel candidate genes’ suggested 
and reported QTL. Results presented in this paper illus-
trate the merits of MA-GWA for detection of significant 
regions associated with economically relevant traits.
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